ANSWER KEY – CLASS 12 – CHEMISTRY – P-1 – SET 1 – 2023 – 24

Q.NO.	ANSWERS	MARKS
1	$(d) Zn Zn^{2+} Ag^{+} Ag$	1
2	(C) $C_6H_5COCH_3 < CH_3COCH_3 < CH_3CHO < HCHO$	1
3	(b) because it does not have an open chain structure and hence it does not have a free – CHO group	1
4	(b) Camphor in nitrogen gas	1
5	(d) Benzyl chloride; Due to resonance, stable benzyl carbocation is formed.	1
6	(c) Ti^{4+} ; Mn^{3+}	1
7	(c) Aniline	1
8	(a) SOCl ₂ in the presence of pyridine	1
9	(a) 9s	1
10	(b) Due to the activation of benzene ring by the methoxy group.	1
11	(b) cis-[Co(en) ₂ Cl ₂] Cl	1
12	(d) Fe has higher number of unpaired electrons than Cu.	1
13	(c) A is true but R is false.	1
14	(a) Both A and R are true and R is the correct explanation of A	1
15	(a) Both A and R are true and R is the correct explanation of A	1
16	(b) Both A and R are true but R is not the correct explanation of A.	1
17	(a) for first order reaction	
	half life of $X = 12$ hours	
	2 days = 48 hours means 4 half lives , amount of X left = $1/16$ of initial value	
	half life of $Y = 16$ hours	1⁄2
	2 days = 48 hours means 3 half lives, amount left = $1/8$ of initial value	
	Ratio of $X:Y = 1:2$	1/2
	(b) b. $mol^{1/2}L^{-1/2}s^{-1}$ as Rate = k [P] ^{1/2}	1
18	Properties that depend on the number of solute particles irrespective of	1
	Osmotic Pressure	1

19	a. b.	1+1
	Br CH,	
	CH -Me Br	
	OR	
		1
	(a) (i) Cl (b)	
	CH ₃	1
20	(a)	1+1
	CH ₃ CH(OCrOHCl ₂) ₂ U of CHO	
	+ $CrO_2Cl_2 \xrightarrow{CS_2}$	
	Toluene Chromium complex Benzaldehyde	
	(with p.intotoldene)	
	KOH/ethylene glycol	
	$C = 0 \xrightarrow{-H_2 0} C = N - NH_2 \xrightarrow{\Delta} CH_2 + N_2$	
	(with Propanone)	
21	(a) Sn + 2 H ² \rightarrow Sn ^{2²} + H ₂ (Equation must be balanced)	1
	$E = E^{\circ} - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^{+}]^{2}}$	
	$= [0 - (-0.14)] - 0.0295 \log \frac{(0.004)}{(0.02)^2}$	1
	= $0.14 - 0.0295 \log 10 = 0.11 \sqrt{0.1105 V}$	
22	a. It is the magnitude of difference in energy between the two sets	
	of d orbital i.e. t_2g and e_g	1
	t ⁻ _{2g} eg ⁻	1
	b. In $[Ni(H_2O)_6]^{2+}$, $Ni^{+2}(3d^8)$ has two unpaired electrons which do not	1
	pair up in the presence of weak field ligand H_2O .	1
23	(a)	1/2
		1/2

	$\pi_1 = \pi_2$	
	$iC_1RT = C_2RT$	1/2
	$\frac{3\times5}{222} = \frac{2}{1}$	/2
	322 M	
	$M = \frac{2 \times 322}{3 \times 5}$	1/2
		1
	M = 42.9 g	
	(b)	
	Vapour pressure of solution p_2 p_3	
24	(a)	
21	The formation of ether is a nucleophilic bimolecular reaction (S_x 2)	
	involving the attack of alcohol molecule on a protonated alcohol, as indicated below:	1/-
	(i) $CH_{3}-CH_{2}-\ddot{O}-H + H^{+} \longrightarrow CH_{2}-CH_{2}-\ddot{O}-H$	72
	+ H +	17
	(ii) $CH_3CH_2-O: + CH_3-CH_2-O H \rightarrow CH_3CH_2-O - CH_2CH_3 + H_2O$	1/2
	$\begin{array}{c} (III) CH_3CH_2 \not > 0 - CH_2CH_3 \longrightarrow CH_3CH_2 - 0 - CH_2CH_3 + H \\ H \end{array}$	1/2
	(a) (i)	
		1⁄2
	\downarrow + zn $\stackrel{\Delta}{\longrightarrow}$ \downarrow + zn0	
	Phenol Benzane (ii)	
		1

	(c)	
	$\therefore k = \frac{0.693}{t_{1/2}}$	1
	$=\frac{0.693}{60}$	1
	00	
	$= 0.01155 \text{ min}^{-1}$ = 1.155 min^{-1}	
30	(a) any two points	1
50	(b) alpha helix and beta pleated sheets	1
	(c)	2
	$H_2N - CH_2 - COOH + H_2N - CH - COOH$	2
	$H_2N - CH_2 - \frac{CO - NH}{CO - NH} - CH - COOH$	
	Peptide linkage CH ₃	
	Glycylalanine (Gly-Ala)	
	(c) Any two points	
	The tertiary structure of proteins represents overall folding of the polypeptide	2
	chains i.e., further folding of the secondary structure. It gives rise to two major molecular shapes viz. fibrous and globular. The main forces which stabilise the 2°	
	and 3° structures of proteins are hydrogen bonds, disulphide linkages, van der	
31	(a) Cu has an outer shell electronic configuration $4s^{-1} 3d^{-10}$.	1
	(b)	
	• half-filled sets of 3d orbitals are relatively more stable	1
	• the energy gap between 3d and 4s orbitals is small.	
	(c) no unpaired electrons; no d-d transition.	1
	(d) Mn^{2+} has $3d^5$ configuration, which is more stable than $3d^6$	1
	configuration of Fe^{2+} . This makes removing an electron from Mn^{2+}	
	more difficult than from Fe^{2+} .	
	(e) Mn^{2+} (5 unpaired electrons) > Cr^{2+} (4 unpaired electrons)	1
	(f) The decrease in the atomic and ionic radii with an increase in the	1
	atomic number of actinoids due to the poor shielding effect of 5f	
	electron.	1
	(g) $10I^- + 2MnO_4^- + 16H^+ \rightarrow 2Mn^{2+} + 8H_2O + 5I_2$	
32	(a)	

33
(a)
$$\Delta_{i}G^{*} = -nFE_{cell}^{*}$$

 $= +300 \times 10^{3} \text{ J mol}^{-1} = +2 \times 96500 \text{ C mol}^{-1} \times E_{cell}^{*}$
 $E_{cell}^{*} = \frac{360 \times 10^{3}}{2 \times 96500} \text{ V}$
 $E_{cell}^{*} = \frac{360 \times 10^{3}}{2 \times 96500} \text{ V}$
 $E_{cell}^{*} = 155 \text{ V}$
(Deduct ½ mark for incorrect unit or no unit)
(b) $\Lambda_{m}^{*} = \lambda_{Mg}^{*2} + 2\lambda_{CT}^{*}$
 $\Lambda_{m}^{*} = (106 + 1526) \text{ S cm}^{2} \text{ mol}^{-1}$
 $\Lambda_{m}^{*} = (106 + 1526) \text{ S cm}^{2} \text{ mol}^{-1}$
 $\Lambda_{m}^{*} = 2586 \text{ S cm}^{2} \text{ mol}^{-1}$
1
OR
(a)
 $E_{cell} = E_{cell}^{*} - \frac{0059}{2} \log \frac{[Zn^{2+}]}{[Cu^{2+}]} \text{ or any other correct mathematical expression of Nernst}$
 $equation.$
(i) E_{cell} will increase
(ii) E_{cell} will increase
(iii) E_{cell} will decrease
(b)
Cathode: $O_{2}(g) + 2H_{2}O(1) + 4e^{-} \longrightarrow 4OH^{-}(aq)$
Anode: $2H_{2}(g) + 4OH^{-}(aq) \longrightarrow 4H_{2}O(1) + 4e^{-}$
Overall reaction being:
 $2H_{2}(g) + O_{2}(g) \longrightarrow 2H_{2}O(1)$
(c) two products – chlorine gas liberated at anode; molten sodium
deposited at cathode